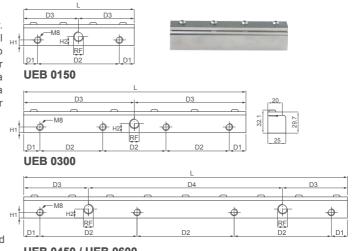
HIGH EFFICIENCY AIR KNIVES

UEB air knives produce a high impact laminar jet of compressed air. They are fully adjustable and precisely engineered with a special design based on the Coanda effect, the natural tendency of a fluid jet to be attracted to a nearby surface. The air blade coming out through their side slot follows the radiused profile and leaves the blower body with a 90° angle from the original direction. The negative pressure brings in a 20 times bigger wind volume allowing a high energy saving. They offer an excellent drying performance and eliminate static electricity.

- Length: 150 mm, 300 mm, 450 mm, 600 mm
- Typical applications: Water removal from surfaces

Flocks and water blow off


Water removal before stick and print

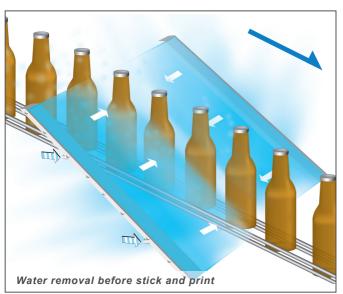
Max working temperature
Max working pressure
Thread specification
Thread size
LT 95°C
LP 7 bar
BSP, NPT
1/4"

Materials Body
V7 Aluminium, electroless nickel plated
B3 AISI 316 Stainless steel

Upper plate A9 Nickel plated steel

B3 AISI 316 Stainless steel

JEB 0450	/ UEB	0600
----------	-------	------


Code	RF	Air capacity (Nm ³ /min)								Dimensions							W		
	inch	AI	AO	Al	AO	Al	AO	Al	AO	Al	AO	D1 mm	D2 mm	D3 mm	D4 mm	H1 mm	H2 mm	L mm	kg
UEB 0150 xx yy	1/4"	0.26	4.70	0.34	6.00	0.42	7.10	0.51	8.60	0.60	10.6	20.0	110	75	-	8	12.5	150	0.3
UEB 0300 xx yy		0.52	9.40	0.68	12.0	0.84	14.2	1.02	17.2	1.20	21.2	22.5	85	150	-			300	0.7
UEB 0450 xx yy		0.78	14.1	1.03	18.0	1.26	21.3	1.53	25.8	1.80	31.8	22.5	135	90	270			450	0.9
UEB 0600 xx yy		1.03	18.7	1.40	24.0	1.68	28.4	2.04	34.4	2.40	42.4	22.5	185	150	300			600	1.4


Pressure (bar) 2,0 3,0 4,0 5,0 6,0

The table shows the air capacity as a function of the air pressure whereas the below graphs show the noise level as a function of the front and side distances from the nozzle outlet at an operating pressure of 2 bar. The air flow leaving the nozzle orifice drags along ambient air, the air blade produced by the nozzle (AIR OUT) has a larger flow rate which is a multiple of the feed air flow (AIR IN).

SAVE ENERGY AND INCREASE THE AMOUNT OF WIND

The compressed air exits through the side slot following the radiused profile and leaves the body with an angle of 90° from the original direction. The negative pressure brings in 20 times wind volume and saves energy consumption greatly.

